Space-time-frequency analysis of EEG data using within-subject statistical tests followed by sequential PCA

نویسندگان

  • Thomas C. Ferrée
  • Matthew R. Brier
  • John Hart
  • Michael A. Kraut
چکیده

A new method is developed for analyzing the time-varying spectral content of EEG data collected in cognitive tasks. The goal is to extract and summarize the most salient features of numerical results, which span space, time, frequency, task conditions, and multiple subjects. Direct generalization of an established approach for analyzing event-related potentials, which uses sequential PCA followed by ANOVA to test for differences between conditions across subjects, gave unacceptable results. The new method, termed STAT-PCA, advocates statistical testing for differences between conditions within single subjects, followed by sequential PCA across subjects. In contrast to PCA-ANOVA, it is demonstrated that STAT-PCA gives results which: 1) isolate task-related spectral changes, 2) are insensitive to the precise definition of baseline power, 3) are stable under deletion of a random subject, and 4) are interpretable in terms of the group-averaged power. Furthermore, STAT-PCA permits the detection of activity that is not only different between conditions, but also common to both conditions, providing a complete yet parsimonious view of the data. It is concluded that STAT-PCA is well suited for analyzing the time-varying spectral content of EEG during cognitive tasks.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Newborn EEG Seizure Detection Based on Interspike Space Distribution in the Time-Frequency Domain

This paper presents a new time-frequency based EEG seizure detection method. This method uses the distribution of interspike intervals as a criterion for discriminating between seizure and nonseizure activities. To detect spikes in the EEG, the signal is mapped into the time-frequency domain. The high instantaneous energy of spikes is reflected as a localized energy in time-frequency domain. Hi...

متن کامل

A new method to consider spatial risk assessment of cross-correlated heavy metals using geo-statistical simulation

The soil samples were collected from 170 sampling stations in an arid area in Shahrood and Damghan, characterized by prevalence of mining activity. The levels of Co, Pb, Ni, Cs, Cu, Mn, Sr, V, Zn, Cr, and Tl were recorded in each sampling location. A new method known as min/max autocorrelation factor (MAF) was applied for the first time in the environmental research works to de-correlate these ...

متن کامل

A Time-Frequency approach for EEG signal segmentation

The record of human brain neural activities, namely electroencephalogram (EEG), is generally known as a non-stationary and nonlinear signal. In many applications, it is useful to divide the EEGs into segments within which the signals can be considered stationary. Combination of empirical mode decomposition (EMD) and Hilbert transform, called Hilbert-Huang transform (HHT), is a new and powerful ...

متن کامل

Classification of single trial motor imagery EEG recordings with subject adapted non-dyadic arbitrary time-frequency tilings.

We describe a new technique for the classification of motor imagery electroencephalogram (EEG) recordings in a brain computer interface (BCI) task. The technique is based on an adaptive time-frequency analysis of EEG signals computed using local discriminant bases (LDB) derived from local cosine packets (LCP). In an offline step, the EEG data obtained from the C(3)/C(4) electrode locations of t...

متن کامل

Prediction of Epileptic Seizures in Patients with Temporal Lobe Epilepsy (TLE) based on Cepstrum analysis and AR model of EEG signal

Epilepsy is a chronic disorder of brain function caused by abnormal and excessive electrical neurons discharge in the brain. Seizures cause disturbances in consciousness that occur without prior notice, so their prediction ability, based on EEG data, can reduce stress and improve quality of life. An epileptic patient EEG data consists of five parts: Ictal, Inter-Ictal, pre-Ictal, Post-Ictal, an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • NeuroImage

دوره 45 1  شماره 

صفحات  -

تاریخ انتشار 2009